Python for Data Science - NumPy, Pandas & Scikit-Learn

Master Python for Data Science - Unlock the Key Tools for Efficient Data Analysis and Modeling!

Development Data Science Udemy
Category Label Platform
Python for Data Science - NumPy, Pandas & Scikit-Learn

Free Courses : Python for Data Science - NumPy, Pandas & Scikit-Learn


Welcome to the Python for Data Science - NumPy, Pandas & Scikit-Learn course, where you can test your Python programming skills in data science, specifically in NumPy, Pandas and Scikit-Learn.


Some topics you will find in the NumPy exercises:

  • working with numpy arrays

  • generating numpy arrays

  • generating numpy arrays with random values

  • iterating through arrays

  • dealing with missing values

  • working with matrices

  • reading/writing files

  • joining arrays

  • reshaping arrays

  • computing basic array statistics

  • sorting arrays

  • filtering arrays

  • image as an array

  • linear algebra

  • matrix multiplication

  • determinant of the matrix

  • eigenvalues and eignevectors

  • inverse matrix

  • shuffling arrays

  • working with polynomials

  • working with dates

  • working with strings in array

  • solving systems of equations


Some topics you will find in the Pandas exercises:

  • working with Series

  • working with DatetimeIndex

  • working with DataFrames

  • reading/writing files

  • working with different data types in DataFrames

  • working with indexes

  • working with missing values

  • filtering data

  • sorting data

  • grouping data

  • mapping columns

  • computing correlation

  • concatenating DataFrames

  • calculating cumulative statistics

  • working with duplicate values

  • preparing data to machine learning models

  • dummy encoding

  • working with csv and json filles

  • merging DataFrames

  • pivot tables


Topics you will find in the Scikit-Learn exercises:

  • preparing data to machine learning models

  • working with missing values, SimpleImputer class

  • classification, regression, clustering

  • discretization

  • feature extraction

  • PolynomialFeatures class

  • LabelEncoder class

  • OneHotEncoder class

  • StandardScaler class

  • dummy encoding

  • splitting data into train and test set

  • LogisticRegression class

  • confusion matrix

  • classification report

  • LinearRegression class

  • MAE - Mean Absolute Error

  • MSE - Mean Squared Error

  • sigmoid() function

  • entorpy

  • accuracy score

  • DecisionTreeClassifier class

  • GridSearchCV class

  • RandomForestClassifier class

  • CountVectorizer class

  • TfidfVectorizer class

  • KMeans class

  • AgglomerativeClustering class

  • HierarchicalClustering class

  • DBSCAN class

  • dimensionality reduction, PCA analysis

  • Association Rules

  • LocalOutlierFactor class

  • IsolationForest class

  • KNeighborsClassifier class

  • MultinomialNB class

  • GradientBoostingRegressor class


This course is designed for people who have basic knowledge in Python, NumPy, Pandas and Scikit-Learn packages. It consists of 330 exercises with solutions. This is a great test for people who are learning the Python language and data science and are looking for new challenges. Exercises are also a good test before the interview. Many popular topics were covered in this course.


If you're wondering if it's worth taking a step towards Python, don't hesitate any longer and take the challenge today.

Related Posts:
  1. Database di Python dengan Peewee
  2. Membuat BOT Terminal
  3. DOM pada Javascript
  4. Tutorial codeigniter untuk pemula
  5. Membuat website responsive

You can support us by donate with buy us a coffee. We appreciate your donation to our work for share free udemy courses.

Get courses alert everyday on our Telegram Channel. Join Now

Insidelearn Telegram Channel

Share this courses to your friends, community.

10,000+ People trust Insidelearn! Get courses alert on Telegram or Discord.